
Vis-à-Vis: Privacy-Preserving Online Social

Networking via Virtual Individual Servers

Amre Shakimov∗, Harold Lim∗, Ramón Cáceres†, Landon P. Cox∗,

Kevin Li†, Dongtao Liu∗, and Alexander Varshavsky†

∗Duke University, Durham, NC, USA

{shan,harold,lpcox,dliu}@cs.duke.edu

†AT&T Labs, Florham Park, NJ, USA

{ramon,kevinli,varshavsky}@research.att.com

Abstract—Online social networks (OSNs) are immensely pop-
ular, but their centralized control of user data raises important
privacy concerns. This paper presents Vis-à-Vis, a decentralized
framework for OSNs based on the privacy-preserving notion
of a Virtual Individual Server (VIS). A VIS is a personal
virtual machine running in a paid compute utility. In Vis-à-
Vis, a person stores her data on her own VIS, which arbitrates
access to that data by others. VISs self-organize into overlay
networks corresponding to social groups. This paper focuses
on preserving the privacy of location information. Vis-à-Vis
uses distributed location trees to provide efficient and scalable
operations for sharing location information within social groups.
We have evaluated our Vis-à-Vis prototype using hundreds of
virtual machines running in the Amazon EC2 compute utility.
Our results demonstrate that Vis-à-Vis represents an attractive
complement to today’s centralized OSNs.

I. INTRODUCTION

Free online social networks (OSNs) such as Facebook,

Twitter, and Foursquare are central to the lives of millions of

users and still growing. Facebook alone has over 500 million

active users and 250 million unique visitors each day [1].

The volume of data handled by OSNs is staggering: Facebook

receives more than 30 billion shared items every month [1],

Twitter receives more than 55 million tweets each day [2], and

Foursquare handled its 40-millionth check-in only five weeks

after handling its 22-millionth [3].

At the same time, many recent incidents suggest that trusting

free centralized services to safeguard sensitive OSN data may

be unwise [4], [5], [6], [7], [8]. These examples underscore the

risks inherent to the prevailing OSN model. First, concentrat-

ing the personal data of hundreds of millions of users under a

single administrative domain leaves users vulnerable to large-

scale privacy violations via inadvertent disclosures [4] and

malicious attacks [5]. Second, providers offering free services

must generate revenue by other means. OSN terms of service

often reflect these incentives by giving the provider the right

to reuse users’ data in any way the provider sees fit [9]. These

rights include sharing data with third-party advertisers without

explicit consent from users [10].

Unsurprisingly, many people have grown wary of the OSN

providers they depend on to protect their private information.

In a survey of 2,253 adult OSN users, 65% had changed their

privacy settings to limit what information they share with

others, 36% had deleted comments from their profile, and

33% expressed concern over the amount of information about

them online [11]. In a survey of young adults, 55% of 1,000

respondents reported being more concerned about privacy

issues on the Internet than they were five years ago [12].

Given the importance of OSNs in users’ lives and the

sensitivity of the data users place in them, it is critical to

limit the privacy risks posed by today’s OSNs while preserving

their features. To address this challenge, we have developed a

general framework for managing privacy-sensitive OSN data

called Vis-à-Vis. Vis-à-Vis can interoperate with existing OSNs

and is organized as a federation of independent, personal

Virtual Individual Servers (VISs). A VIS is a virtual machine

running in a paid cloud-computing utility such as Amazon

Elastic Compute Cloud (EC2) or Rackspace Cloud Servers.

Utilities provide better availability than desktop PCs and do

not claim any rights to the content placed on their infras-

tructure [13]. Thus, just as cloud utilities are already trusted

with many enterprises’ intellectual property, utility-based VISs

store their owner’s sensitive data and arbitrate requests for that

data by other parties.

In this paper, we focus on the rapidly growing challenge

of preserving the privacy of location information within an

OSN. Location-based OSNs utilize privacy-sensitive infor-

mation about users’ physical locations and are increasingly

popular [14], [15], [16], [17]. For example, as of June, 2010,

Foursquare had more than 1.5 million users and was expected

to grow to 2 million users by July [18].

Vis-à-Vis supports location-based OSNs through a group

abstraction that gives members control over how they share

their location and allows them to query the locations of other

members. Groups are administered by the users that created

them using a range of admissions policies. For example,

groups can be open, as are most of Facebook’s “fan pages”,

restricted by social relationships such as “Alice’s friends,” or

978-1-4244-8953-4/11/$26.00 c©2011 IEEE

restricted by a set of credentials such as “The Duke Alumni

Club of New York.” Depending on a group’s admission policy,

members may wish to share their location at finer or coarser

granularities. Prior studies have shown that users will typically

disclose their full location or no location at all with close

friends [19], but will utilize vaguer location descriptions when

sharing their location information on public sites [20].

In addition, we aim for Vis-à-Vis groups to scale to thou-

sands of members. While we expect most groups with which

people share private location information will be limited to

hundreds of members (e.g., the average Facebook user has

130 friends [1]), we want the flexibility to scale to much larger

groups if the need arises (e.g., 23% of Facebook’s fan pages

have more than 1,000 members [21]).

To provide users with flexible control of their location

information and to scale to groups with thousands of members,

Vis-à-Vis organizes VISs into per-group overlay networks we

call location trees. Within each tree, higher nodes represent

coarser geographic regions such as countries while lower

nodes represent finer regions such as city blocks. Interior nodes

are chosen from the set of member VISs via a distributed

consensus protocol. A user may publish her location to a group

at an arbitrary granularity as long as her VIS becomes a leaf

node within the subtree covering this location. Queries over a

region are sent to the interior nodes covering that region and

passed down the tree to lower nodes. Using this hierarchy, Vis-

à-Vis guarantees that location queries complete in O(log(n))
hops for groups of size n.

This paper makes the following contributions:

• It presents the design of a privacy-preserving framework

for location-based OSNs based on hierarchical overlay

networks of Virtual Individual Servers (Sections II and III).

• It describes an implementation of this framework, in-

cluding a companion social application for mobile phones,

that provides efficient and scalable OSN operations on

distributed location data (Section IV) .

• It demonstrates the feasibility of our approach through per-

formance experiments involving up to 500 virtual machines

running in Amazon EC2, including machines distributed

across two continents. We found that the latency of our de-

centralized system is competitive with that of a centralized

implementation of the same OSN operations (Section V).

Despite this paper’s focus on the sharing of geographic

locations within large social groups, it should be clear that

the Vis-à-Vis framework can be generalized to support other

data types and social relationships, for example photographs

shared among pairs of friends. In addition, Virtual Individual

Servers can support many other applications besides online

social networking, for example a personal synchronization

service for mobile devices and a personal email service [22].

II. LOCATION-BASED GROUPS

The central abstraction supported by Vis-à-Vis is a group, as

befits the central role played by social groups in OSNs. As a

foundation, each principal in Vis-à-Vis is defined by a public-

private key pair. Users are defined by a self-signed key pair.

The private half of each user’s key pair is stored securely by

her VIS, allowing a VIS to act on her behalf. Users distribute

their public key and the IP address of their VIS out of band

(e.g., via email or an existing OSN such as Facebook).

Each group consists of an owner, a set of users defining the

group’s membership, and a mapping from group members to

geographic regions. The group owner is the user who initiates

and maintains the group. Each user within the group possesses

a shared attribute such as an inter-personal relationship with

the group owner or an interest in a particular topic. The

geographic region associated with each group member is a

geographic area the user wishes to share with other group

members. Shared regions can be fine-grained or coarse-grained

and can be set statically (e.g., hometown) or updated dynam-

ically (e.g., current GPS coordinates).

Groups are named by a descriptor consisting of the group

owner’s public key and a string used to convey the attribute

shared among group members. Descriptors can be expressed

as a 〈K+
owner, string〉 pair, where K+

owner is the public key

of the group owner. For example, a user, Alice, who is the

president of the Duke Alumni Club of New York and works

for AT&T might create groups 〈K+

Alice
, DukeClubNY C〉,

and 〈K+

Alice
, AT&Tcoworkers〉. Including the group owner’s

public key in each group descriptor allows users to manage

the descriptor namespace independently and prevents naming

conflicts. Descriptors do not contain privacy-sensitive infor-

mation and, like a user’s public key and VIS IP address, are

distributed out of band. We imagine that descriptors will be

embedded in web sites and users’ existing OSN profiles.

Vis-à-Vis supports five operations on location-based groups

under the following semantics:

• create(string, policy) : Creates a new, empty group using

the public key of the caller and the passed-in string to

construct the group descriptor. The policy argument al-

lows group owners to define a call-back for implementing

admission-policy plugins.

• join(descriptor, region, credential) : Adds the caller to the

group with the specified descriptor, and, if successful, sets

the region she shares with other group members. Success

of the call depends on whether the credential passed in

by the caller satisfies the admission policy for the group.

Credentials can be empty for open groups, an email address

from a specific domain such as duke.edu, or a signed social

attestation [23] specifying a relationship between users.

• remove(descriptor) : Removes the caller from the group.

• update(descriptor, region) : Creates a mapping from the

caller to a geographic region within a group. The caller must

already be a group member for this operation to succeed.

• search(descriptor, region) : Returns a list of all group

members (and their associated geographic regions) whose

regions are contained within the passed-in region.

The update and search operations are general enough to

support a wide range of options. Depending on how much

detail users want to reveal about their location to other group

members, they can post different regions to different groups

at arbitrary granularities. For example, if a user is usually not

interested in being located by alumni of her alma mater, she

could limit the region she shares with them to the city where

she lives. However, in the fall, when she gathers with other

fans to watch college football games, she may want to share

the location of the bar where they usually meet. Such decisions

can be made independently of how her location is represented

in any other groups to which she might belong.

III. ARCHITECTURE

To realize the Vis-à-Vis group abstraction, we organize

users’ VISs into the hierarchy shown in Figure 1. The Vis-à-

Vis architecture is similar in many respects to the distributed

tree structures utilized by Census [24] and P2PR-Tree [25]. We

choose to use a hierarchical structure rather than a distributed

hash table (DHT) because DHTs’ simple get-set interface does

not easily support the range queries required for the search

operation. We initially considered using a distributed skip

graph [26] to manage location information, but were unhappy

with the overhead of resorting distributed lists whenever a user

changed her location.

Users access location-based groups through clients such

as stand-alone mobile applications and web browsers. Vis-

à-Vis is designed to interoperate with, rather than replace,

established OSNs such as Facebook. A combination of embed-

ded descriptors, web-browser extensions, and OSN APIs such

as Facebook Connect allow users to adopt Vis-à-Vis while

retaining their significant investments in existing platforms.

Existing OSNs are treated as untrusted services that store only

opaque pointers to sensitive content stored in VISs.

For example, users can integrate a Vis-à-Vis-managed

location-based group into a Facebook group by embedding a

group descriptor in the Facebook group’s information. When

a user loads the group page in their web browser, a Vis-à-

Vis browser extension interprets the document received from

Facebook, identifies the group descriptor, and rewrites the

page to include information downloaded from the appropriate

VISs. Rendered pages can include a map displaying members’

current locations, or UI components for updating a user’s

published location. These techniques for integrating externally

managed information with existing OSNs are not new [23],

[27], [28], [29]. Due to space constraints, we will not discuss

the browser-side aspects of our architecture in any further

detail. We present an example of a standalone mobile client

in Section IV.

Clients interact with groups via their user’s VIS. Each group

supports a membership service responsible for implementing

admission policies and for maintaining pointers to the group’s

location tree. The root and interior nodes of the location tree

are coordinator VISs. In addition, each group member’s VIS

acts as a leaf node in the location tree.

The rest of this section describes Vis-à-Vis’s trust-and-threat

model, the function of each architectural component, and how

these components collectively implement the group operations

described in Section II.

facebook

Vis-à-Vis clients

VIS

Membership
service

...

... ...

Membership
service

... ...

Group 1 Group 2

Fig. 1. Vis-à-Vis architectural overview.

A. Trust-and-threat model

Vis-à-Vis’s decentralized structure provides users with

stronger privacy protections than centralized services such as

Facebook and MySpace, because it gives them more direct

control over who has access to their personal data. Of course,

Vis-à-Vis cannot eliminate breaches completely, and this sec-

tion describes the classes of attacks that Vis-à-Vis is and is

not designed to address.

Vis-à-Vis’s trust model is based on the business interests

of compute utilities and the inter-personal relationships of

users; both the compute utility and a user’s social relations

are trusted to not leak any sensitive information to which they

have access. Unlike decentralized OSNs such as Persona [27],

in which users do not trust their storage services, Vis-à-Vis

exposes unencrypted data to the utilities hosting VISs.

There are three key benefits of entrusting compute utilities

with access to cleartext data: 1) it simplifies key management,

2) it reduces the risk of large-scale data loss due to lost or

corrupted state, and 3) most important for this paper, it allows

computations such as range queries to be executed on remote

storage servers, which is a key requirement for mobile services

such as Loopt [14] and Google Latitude [15].

Since compute utilities control the hardware on which VISs

execute, utility administrators can access all of a user’s per-

sonal data. Despite this, Vis-à-Vis’s assumption that compute

utilities will not exercise this power is reasonable. Compute

utilities’ business model is based on selling computational

resources to users rather than advertising to third parties. The

legal language of utilities’ user agreements formalize these

limitations [13], providing economic and legal consequences

if personal data is abused. In contrast, OSN terms of use usu-

ally grant the service provider a “non-exclusive, transferable,

sub-licensable, royalty-free, worldwide license to use any IP

content that you post” [9]. We note that many companies

already trust compute utilities with their intellectual property

by hosting their computing infrastructure there.

In addition, Vis-à-Vis makes several assumptions about the

guarantees provided by a compute utility and the software

executing within each user’s VIS. First, we assume that any

compute utility that hosts a VIS supports a Trusted Platform

Module (TPM) capable of attesting to the software stack in use

by the VIS [30]. A TPM infrastructure within the cloud allows

compute utilities to prove to their customers what software is

executing under their account.

While such capabilities are rarely utilized at the moment,

we believe that TPMs will be a commonly supported feature

for utilities in the future. Vis-à-Vis may still function in the

absence of TPMs, but can lead to a wide range of security

problems that are inherent to open systems [31]. For Vis-à-Vis,

an attested software stack will allow nodes to prove to each

other that they are executing correct protocol implementations.

Vis-à-Vis also assumes that users’ VISs are well admin-

istered and free of malware. Users, or preferably providers

of managed VIS services, must properly configure the access-

control policies of their software, and install the latest available

security patches. As with other networked systems, software

misconfiguration and malware are serious threats to Vis-à-Vis,

but are orthogonal to the focus of our design. If an adversary

gains control of a user’s VIS it would not only gain access

to the user’s own personal data, but could potentially access

others as well by masquerading as the victim.

With this trust-and-threat model in mind, we now discuss

the design of Vis-à-Vis in greater detail.

B. Membership service

A group’s membership service is initially implemented

by the group founder’s VIS, although multiple VISs can

participate in the membership service if the group grows. The

primary function of the membership service is to provide a

gateway to the location tree, in which group members’ location

information is maintained. New group members attempt to

join a group through the membership service executing on the

group owner’s VIS. The owner’s IP address is distributed out

of band in the same manner as the owner’s public key.

Access to the location tree can either be open to all

requests or guarded, depending on the admission policy of

the group. For example, mimicking the admission policies of

Facebook’s university networks, a group’s membership service

could require evidence of access to an email address within a

specific domain. If the membership service receives sufficient

evidence, it can issue a group capability in the form of a

secret key. Subsequent requests among group members could

be authenticated using this capability.

C. Location trees

Vis-à-Vis applies the distributed-systems techniques of con-

sensus, leases, and hierarchy [32] to provide efficient, fault-

tolerant, and scalable range queries over group members’ loca-

NC

Du

...

...

Du RT

Or

NJ ...

...

P1 Pn

...

State

County

City

Place

U1 UmUser

...

U2

P2

US... ...Country UR

Fig. 2. User U1’s view of a group’s location tree.

tion information. Group-specific location information in Vis-à-

Vis is accessed through each group’s location tree. A location

tree is a hierarchical routing structure designed to efficiently

and scalably support range queries over user locations. Unlike

other data structures which use an arbitrary location region

to partition a map, location trees use hierarchical political

divisions. Since the divisions of a map are already known, the

levels of the tree can be statically computed. Figure 2 shows

an example tree. The top level represents countries, followed

by states, counties, cities, and places. Leaf nodes represent

users. In this example, user U1 is in place P1, in the city of

Durham, within Durham County, in the state of North Carolina

(NC), in the United States (US).

Each member’s VIS occupies exactly one leaf node, regard-

less of the granularity at which she shares her location. The

only constraint users face when inserting their VIS is that it

must be a leaf node within the subtree covering its shared

location. If a user’s shared location is coarse, it may become

a leaf node randomly below the corresponding interior node.

A potential danger of using static political divisions is

that the finest-grained regions could be vulnerable to flash

crowds. For example, places defining a sports arena would be

unlikely to scale up to venue capacities of tens of thousands

of users. To avoid such problems, Vis-à-Vis could easily apply

techniques described by Census [24] and P2PR-Tree [25] for

dynamically re-partitioning geographic regions into smaller

subregions. Because of its hierarchical structure, any dynamic

decomposition of geographic space would be hidden from

higher levels of the tree.

1) Routing state: Each node maintains a subgraph of the

tree, giving it partial knowledge of the group membership

and members’ locations. We have optimized for the expected

common case of queries about nearby locations by having

nodes store more information about closer VISs than farther

VISs, thereby ensuring that queries complete in fewer hops on

closer regions than farther regions. For example, in Figure 2,

user U1 maintains a list of its siblings in P1 (i.e., U2 to

Um) and their shared locations. Nodes also maintain a list

of regional coordinators for each level of the tree along their

path to the root. A coordinator is a VIS whose shared location

is within the corresponding region.

Coordinators are identified through a distributed consensus

protocol such as Paxos [33]. The coordinators are elected by

and from the pool of immediate child VISs. For example,

in Figure 2, the coordinator for P1 is elected from the

pool of U1, U2, . . . , Um. Similarly, the coordinator for the

city of Durham is elected by and from the coordinators of

P1, P2, . . . Pn, the coordinator for Durham county is elected

by and from the coordinators of cities in Durham county, and

so forth. A top-level coordinator serves at all levels of the tree.

In Figure 2, user U1 maintains a list of coordinator VISs for

each of the following: places P1 to Pn in the city of Durham,

all cities in Durham County, all counties in North Carolina,

all states in the US, and all countries. To retrieve a list of user

locations in Monmouth County, New Jersey (NJ), US, user U1
forwards a search request to the NJ coordinator. Because this

VIS is sharing a location in NJ, it will have a pointer to the

Monmouth County coordinator (if there are any users in this

region), and forwards the search request to this VIS.

It is the responsibility of the Monmouth County coordina-

tor to collect the list of users sharing their location within

its county. The Monmouth coordinator has pointers to the

coordinators for all cities in the county, which in turn have

pointers to all places within those cities. Thus, the Monmouth

coordinator forwards the search request to the coordinators for

all cities in Monmouth, each of which forwards the request

to the coordinators of all places in their cities. The place

coordinators finally return lists of their leaf VISs and their

shared locations to the Monmouth coordinator.

Unless the Monmouth coordinator knows the number of

places in the tree that are populated, it cannot know when

all results have been returned. One way to address this would

be to use a time-out, such that the coordinator waits for a

fixed period of time before returning an answer to a query.

However, this would require coordinators to wait for that

period on every request, even if all answers had been received.

Instead, coordinators maintain extra information with their

parents about the number of populated places below them

in the tree. In our example, this would allow the Monmouth

coordinator to know how many query responses to expect from

the place coordinators. Once all of the responses are received,

the Monmouth coordinator combines the search results and

returns them to U1.

2) Tree maintenance: Because coordinators’ identities are

replicated within the routing state of all group members, it

is important for members to have a consistent view of which

VIS is a coordinator for which region, even as VISs leave the

group or change locations. Vis-à-Vis maintains the consistency

of this state using leases. VISs obtain a lease for their role as

coordinator and periodically multicast lease-renewal messages

down the tree as long as they continue to serve.

Coordinator failures are detected through explicit with-

drawals (in the case of a user changing locations) or expir-

ing leases (in the case of unplanned disconnections). Thus,

in addition to maintaining a list of coordinators along the

path to the root, each VIS must also maintain the lease

expiry time for any coordinator they would be a candidate

to replace. If a coordinator fails to renew their lease, a new

election is held and election results are multicast down the

tree. For example, in Figure 2, leaf nodes U1, U2, . . . , Um

would maintain leasing state for the coordinator of P1, the

coordinators for P1, P2, . . . , Pn would maintain leasing state

for the coordinator of the city of Durham, and so forth.

Similarly, it is important for VISs sharing the same place

coordinator to have a consistent view of their siblings. Thus,

VISs also maintain expiry state for their siblings. Nodes

periodically renew their lease with their siblings via multicast.

If a sibling’s lease expires without renewal, the sibling is

assumed to have failed.

D. Operations

Vis-à-Vis groups implement each group operation—create,

join, remove, update, and search—using the leasing and

routing state maintained by VISs.

• create: To create a new group, a user distributes the

group descriptor and the IP address of her VIS as needed.

The owner’s VIS provides the membership service for the

group, which is similar to Facebook group founders being

automatically made group administrators.

• join: To join a group, a VIS contacts the group’s mem-

bership service and asks for the addresses of the top-level

coordinators. If admitted into the group, the VIS then uses

these lop-level hosts to recursively identify the coordinator

of the place where it wishes to become a leaf node.

If the coordinator for the place exists, the new VIS notifies

the coordinator of its presence. The coordinator then multi-

casts the IP address and shared location of the new VIS to

other VISs in the region, who forward their information to

the joining node. On the other hand, if the place coordinator

or any coordinators along the path to the root do not exist,

the joining VIS elects itself the coordinator of these previ-

ously unpopulated regions. Notification of these updates are

forwarded to the appropriate regions.

• remove: To remove itself from a group, a VIS sends a

purge message to its sibling VISs, removing it from their

routing state. A VIS can also remove itself by allowing its

leases to expire.

• update: If a location update does not change a VIS’s place,

the VIS simply multicasts its new location to its siblings

as part of its lease-renewal messages. If a location update

requires moving to a new region, the node purges itself from

its siblings’ routing state (either explicitly or via an expired

lease), looks up the coordinator for the new region, and

notifies the new coordinator of its location.

• search: Search is performed in two stages. First, a VIS

decomposes the requested bounding-box region into the

smallest set of covering subregions. For each subregion

in this set, the VIS looks up the coordinator, and if the

coordinator exists, sends it a search request. Search requests

received by coordinators are satisfied using the recursive

procedure described in Section III-C1.

IV. IMPLEMENTATION

We built a Vis-à-Vis prototype based on the design described

in Section III and deployed it on Amazon EC2. We also

modified Apache ZooKeeper to support namespace partition-

ing. Finally, we created a mobile phone application called

Group Finder to test and evaluate our Vis-à-Vis prototype.

This section describes these software implementations.

A. Vis-a-Vis and ZooKeeper

Our prototype Vis-à-Vis implementation is written in Java

and consists of over 3,300 semi-colon terminated lines of code

and 50 class files.

Software for maintaining location-tree state is a multi-

threaded application that maintains its position in the tree

by exchanging heartbeats with other nodes and participating

in coordinator elections. This software also serves incoming

requests from the client, e.g., update the shared location, leave

or join the tree. Our implementation supports both IP- and

application-level multicast. However, since Amazon EC2 does

not support IP multicast, we use application-level multicast for

the experiments reported in Section V.

We use ZooKeeper [34] for our coordinator election service.

In our Vis-à-Vis prototype, the ZooKeeper server runs on the

group founder’s VIS. However, ZooKeeper supports clustering

and can be run on multiple VISs. ZooKeeper includes a leader

election function based on Paxos [33], which we use for our

coordinator election. We have modified ZooKeeper to support

optional namespace partitioning. This allows us to span the

coordinator election service across multiple datacenters, im-

proving performance and reducing the number of expensive

roundtrips across long distances. For example, if the tree

consists of a number of VISs in Europe and North America,

then it is beneficial to use two ZooKeeper instances: one

in Europe and another in North America. Each ZooKeeper

instance is responsible for a particular namespace, e.g., EU or

US, and serves requests from the same continent. However,

if a European VIS wants to join a location in the US, the

EU-based ZooKeeper would redirect this VIS to a US-based

ZooKeeper instance.

Finally, each VIS runs a Tomcat server. Low-level Java

Servlet APIs provide an interface that supports the group

operations described in Section II. High-level APIs provide

application-specific operations. These APIs only accept re-

quests from the owner of the VIS.

B. Group Finder mobile application

We also developed a companion iPhone application for Vis-

à-Vis called Group Finder. The application allows a user to

submit her location along with a status message to a group

she belongs to, and retrieve the last known locations and

status messages of the other group members. We refer to the

operation of submitting a location and status message to a

server as a “check-in”.

A screenshot of Group Finder is shown in Figure 3. The

current location of the user is shown as a blue dot and the

most recent check-in locations of the group members as pins.

Fig. 3. Screenshot of the Group Finder application.

Selecting a pin shows the corresponding group member’s

photo, his last status message, and the time since his last

update. The buttons at the top of the screen allow the user

to check in or retrieve information about the latest check-ins

from group members. Just below the buttons, Group Finder

displays the name of the currently selected group.

In our implementation, each user’s mobile phone commu-

nicates only with that user’s VIS. Location updates and status

messages are shared only within the current group. Retrieving

the latest check-in locations of group members is implemented

in the VIS as a call to the search operation, with the location

bounds equal to the map area shown on the screen. Check-ins

invoke the update operation.

We used Group Finder to debug the Vis-à-Vis framework

and measure end-to-end latencies over 3G and WiFi networks.

We report on these findings in Section V.

V. EVALUATION

In our experimental evaluation of Vis-à-Vis, we sought

answers to the following three questions:

• How well does our Vis-à-Vis prototype perform the core

group operations of join, update, and search?

• How well does our Vis-à-Vis prototype perform when the

nodes are geographically spread across continents?

• How well does our Group Finder application perform when

communicating with Vis-à-Vis over WiFi and 3G networks?

We wanted to characterize the performance of our decen-

tralized approach to managing information in location-based

OSNs. For comparison, we also implemented the Vis-à-Vis

group abstraction using a centralized approach. The centralized

service is a conventional multi-tiered architecture, consisting

of a front-end web-application server (Tomcat server) and a

back-end database server (MySQL server). We expected the

Fig. 4. join and update performance.

centralized server to provide lower latency than our decentral-

ized Vis-à-Vis prototype, but wanted to determine whether our

prototype’s performance was competitive.

We ran micro-benchmarks, studied the effect of geographic

distribution of VISs, and measured end-to-end latencies using

our Group Finder application. All experiments used EC2

virtual machines as VISs. Each virtual machine was configured

as an EC2 Small Instance, with one virtual core and 1.7 GB

of memory. Our centralized service ran on the same type of

virtual machine in the same data center.

The location tree for all experiments was based on our

Group Finder app, which uses an 8 × 8 grid for its finest-

grained locations. The resulting location tree had four levels

(including leaf nodes) and four coordinators per level.

A. Micro-benchmarks

For our micro-benchmarks, we wanted to measure the

latency from an external host to complete the join, update,

and search operations in both Vis-à-Vis and our centralized

implementation. We measured latency at a wired host at Duke

from the time an operation request was issued to the time it

completed. VISs were hosted within the same Amazon data

center on the east coast of the US, where the round-trip latency

between machines varied between 0.1 and 5ms.

For these experiments, we varied the group size from 10

to 500 members, and assigned each member a separate VIS.

VISs inserted themselves into the tree as randomly-placed

leaf nodes. For each experiment, we report the mean time

over 20 trials to complete each operation, including network,

DNS, and server latency. In all figures, error bars denote

standard deviations. Due to occasional, transient spikes in the

time to complete DNS lookups, we did not include some

outliers in our micro-benchmark results. The vast majority

of DNS lookups completed within tens of milliseconds, but

occasionally lookups took hundreds of milliseconds or timed

out altogether. We attribute these spikes to well documented

problems specific to Amazon EC2 [35], but since the spikes

were rare we did not thoroughly examine them. Thus, when

network latency was more than an order of magnitude higher

than normal, we removed 1) these high-latency trials, and 2)

an equal number of the lowest-latency trials.

Fig. 5. Local search performance.

Figure 4 shows the average latency to complete join and

update operations for our Vis-à-Vis prototype and our central-

ized implementation. In the centralized case, join and update

are identical: both essentially insert a new value into the

MySQL database. For Vis-à-Vis, join is more expensive than

update because the VIS must initialize its routing state before

registering its own location with a coordinator.

As expected, the centralized implementation had lower

latencies than Vis-à-Vis, with update operations completing

in approximately 20ms for all group sizes. Nonetheless, our

decentralized Vis-à-Vis implementation performs reasonably

well, with join operations completing in approximately 400ms

and update operations completing in under 100ms for all

group sizes. These results demonstrate two important prop-

erties of Vis-à-Vis: 1) that join and update provide reasonable

efficiency, even though the centralized case is faster, and 2)

that join and update scale well to large group sizes.

To understand search performance, we investigated two

cases. In the first case, we performed local search operations

within a single fine-grained region. These searches only re-

quired communication with one coordinator VIS. In the second

case, we performed search operations across the entire group

so that the locations of all group members were retrieved.

These searches required contacting all coordinators in the tree

and represent a worst case for Vis-à-Vis.

Figure 5 shows the average latency to perform a local

search for the centralized implementation and Vis-à-Vis. As

expected, both perform well, returning results in under 100ms

and easily scaling to 500-member groups. Recall that VISs

inserted themselves randomly into the tree, so that in the case

of a 500-member group, low-level coordinators returned an

average of 8 locations per query.

Figure 6 shows the average latency to perform a group-

wide search for the centralized implementation and Vis-à-

Vis. Again as expected, Vis-à-Vis’s decentralized approach

has higher latency than the centralized case for group-wide

searches since queries require communicating with multiple

coordinators. However, Vis-à-Vis’s latency plateaus at around

200ms for all groups larger than 100, while the centralized ap-

proach experiences increased latency for 500-member groups.

Fig. 6. Group-wide search performance.

Like the join and update micro-benchmarks, these results

demonstrate 1) that Vis-à-Vis’s performance is reasonable,

even when compared to a fast centralized implementation, and

2) that Vis-à-Vis scales well, even in the worst case when all

coordinators must be contacted.

Note that our maximum group size of 500 corresponds to

the majority of Facebook groups, even though many are much

larger [21]. We would have liked to generate results for groups

of 1,000 or more VISs, but could not due to EC2 limitations.

Nonetheless, given the results of our micro-benchmarks, we

see no reason why even our unoptimized prototype would not

scale to tens of thousands of nodes.

B. Effect of geographic distribution of VISs

To study the effect of geographic distribution of VISs on

Vis-à-Vis, we built a location tree with nodes hosted at two

Amazon EC2 data centers located in distant geographic loca-

tions: 50 nodes in the US and 50 nodes in the European Union

(EU), specifically Ireland. We left the group’s membership

service in the US zone, and ran one ZooKeeper instance in

each geographic zone with a partitioned namespace. We used

the same client machine at Duke as in Section V-A. The

round-trip latency between the US- and EU-based nodes varied

between 85 and 95ms.

We compared two different methods of constructing the tree.

The first is a random assignment, where a VIS joins a random

location. This method is expected to have poor performance

since an EU-based VIS has to contact a US-based ZooKeeper

instance when joining a US-based location, and possibly a

number of US-based coordinators. The second method is

proximity-aware assignment. This scenario assumes that US-

and EU-based VISs are more likely to join a ZooKeeper

instance near their respective published locations. This assign-

ment should have better performance since a EU-based VIS

will mostly interact with EU-based servers. However, both of

these methods incur unavoidable overhead from the network

latencies between the US-based client machine and the EU-

based VISs, and between the EU-based VISs and the US-based

group’s membership service.

Figure 7 shows the latencies of the join and search oper-

ations on a cross-continental 100-node tree with 50 nodes in

Fig. 7. Effect of geographic distribution of VISs.

Europe and 50 nodes in North America. In the case of random

assignment, we measured the latencies of an EU-based VIS

joining a random (EU or US) location of the tree. For the

proximity-aware assignment, we measured the latency of a

EU-based VIS joining an EU location of the tree. For both

scenarios we measured the local search operation performed

by an EU-based VIS.

As expected, latencies using the random assignment method

are longer than those using the proximity-aware method.

However, even the shorter latencies are longer than those

reported in Section V-A due to the unavoidable overhead

described above.

C. End-to-end latency

The goal of our final set of experiments was to measure

the end-to-end latency of a mobile application using Vis-à-

Vis. These experiments were performed at Duke using our

Group Finder iPhone application. We instrumented the Group

Finder and server code to measure the latencies of checking

in and retrieving group members’ locations. We measured

the network and server latency to complete these tasks while

varying the following parameters: network type (WiFi or 3G

cellular), group size (10 or 100 members), and architecture

(Vis-à-Vis or a centralized server).

During a check-in, the user’s client uploaded a location via

an update call to a server: her VIS in the Vis-à-Vis case and

the centralized server in the other. For Vis-à-Vis experiments,

the user’s VIS synchronously translated the user’s location to

the correct coordinator, notified the coordinator of the user’s

new location, then returned control to the mobile device. A

user retrieved group members’ locations through a search call.

In Vis-à-Vis this call propagated queries down the location

tree, and in the centralized case it led to a MySQL query.

As with the micro-benchmarks, we report the mean and

standard deviation of latencies across 20 trials. However,

unlike with the micro-benchmarks, we do not remove outliers

for our end-to-end results. This is because spikes in 3G

network latency are common and removing outliers from the

wireless experiments would have given an inaccurate view of

Vis-à-Vis’s performance.

Group Size Latency Component
Decentralized Centralized

search update (far away) update (nearby) search update

10
Network 169 (98) 365 (97) 295 (225) 211 (57) 263 (177)
Server 36 (14) 297 (37) 14 (15) 10 (3) 8 (1)
Total 205 662 309 221 271

100
Network 376 (166) 322 (57) 362 (89) 311 (87) 287 (37)
Server 160 (28) 295 (40) 10 (9) 68 (50) 9 (3)
Total 536 617 372 379 296

TABLE I
GROUP FINDER MEAN LATENCY OVER WIFI IN MILLISECONDS, WITH STANDARD DEVIATIONS IN PARENTHESES.

Group Size Latency Component
Decentralized Centralized

search update (far away) update (nearby) search update

10
Network 870 (918) 3004 (3678) 1673 (1104) 1103 (905) 1280 (1845)
Server 44 (12) 438 (184) 27 (15) 7 (1) 7 (1)
Total 914 3442 1700 1110 1287

100
Network 2812 (3428) 3873 (6003) 2294 (3098) 1940 (1263) 1363 (1160)
Server 155 (41) 385 (71) 28 (17) 8 (6) 31 (33)
Total 2967 4258 2322 1948 1394

TABLE II
GROUP FINDER MEAN LATENCY OVER 3G CELLULAR IN MILLISECONDS, WITH STANDARD DEVIATIONS IN PARENTHESES.

Table I shows the time for Group Finder to retrieve the

locations of a group’s members (i.e., to complete a search

operation) over WiFi, broken down by network and server

latency. The increased server latency for 100 group members

in the decentralized case reflects the need to communicate

with more coordinators. The server latency is comparable to

our search micro-benchmarks for groups with 100 members.

Table I also shows the time for a Group Finder user to

check-in (i.e., to complete an update operation) over WiFi.

For the decentralized setup, we measured the time to check-

in to a region that is far away, which required contacting

several coordinators, and the time to check-in to a nearby

region, which required contacting a single coordinator. As with

our micro-benchmarks, group size had little effect on search

latency. Also as expected, checking in to a nearby location

was faster than checking in to a far-away location.

These results demonstrate that the performance of common

tasks in Group Finder, such as retrieving members’ locations

and checking in to a nearby location, are dominated by net-

work latency rather than server latency. Only in the uncommon

case when a user checks in to a far away region would server

latency approach network latency under WiFi.

Table II shows the latency of the same Group Finder tasks

using the iPhone’s 3G cellular connection. These results show

that 3G network latency was often an order of magnitude

greater than that of WiFi. In addition, standard deviations for

3G latency were often greater than the means themselves. As

a result, server latency was small relative to network latency

in all our 3G experiments.

Overall, our end-to-end experiments demonstrate that for

mobile applications such as Group Finder, performance is

often dominated by the latency of wireless networks rather

than that of Vis-à-Vis’s back-end services. This effect reduces

the perceived performance differences between Vis-à-Vis and

centralized OSNs.

VI. RELATED WORK

The importance of protecting privacy in OSNs has attracted

significant attention from the research community. This section

compares Vis-à-Vis to the most relevant related work.

We have published two short workshop papers on Virtual

Individual Servers and Vis-à-Vis [22], [36]. That early work

led us to redesign our core data structures and algorithms

to improve performance. More specifically, we replaced dis-

tributed hash tables and skip graphs with the location trees

presented here. We then reimplemented our system according

to the new design and built a new location-based social

application on top of Vis-à-Vis. Finally, we did a larger and

more thorough evaluation of our system using EC2 instead of

PlanetLab and Emulab.

We have also developed Confidant [29], a decentralized

OSN based on personal computers residing in homes or

offices. Confidant focuses on a socially-informed replication

scheme to improve on the limited availability of such ma-

chines. In contrast, Vis-à-Vis is based on highly available VISs

that do not require replication.

Most of the proposed decentralized OSNs, such as Per-

sona [27], NOYB [28], flyByNight [37], PeerSoN [38], and

others [39], assume that the underlying storage service re-

sponsible for holding users’ personal data is not trustworthy.

Puttaswamy protected users’ location information under this

assumption as well [40]. Vis-à-Vis represents a philosophical

departure by entrusting compute utilities such as EC2 with

access to unencrypted versions of this data. As explained in

Section III-A, we feel that trusting compute utilities is war-

ranted given their business models and terms of use. As TPM-

enabled services are more widely embraced by utilities [30],

the trustworthiness of users’ VISs will increase. Furthermore,

Vis-à-Vis leverages the trust it places in compute utilities and

the VISs they host to provide services such as range queries

over location data that are not possible when servers hold

encrypted data.

Cutillo et al. [41] proposed a peer-to-peer OSN scheme

that leverages trust based on the social relationships among

friends and acquaintances to replicate profile information and

anonymize traffic. In contrast, Vis-à-Vis is designed to support

flexible degrees of location sharing among large groups of

users, possibly in the absence of strong social ties.

Finally, the hierarchical organization of Vis-à-Vis shares

many traits with both P2P-RTree [25] and Census [24], al-

though neither is focused on OSN privacy. P2P-RTree is a

spatial index designed for peer-to-peer networks. The subset

of location-tree information maintained by VISs in Vis-à-Vis

is very similar to the information stored by peers in P2P-

RTree, but does not provide any fault-tolerance mechanisms

or consistency guarantees.

Census [24] is a platform for building large-scale distributed

applications that provides a consistent group membership

abstraction for geographically dispersed nodes. Census allows

the entire membership to be replicated at all nodes, and

tightly integrates a redundant multicast layer for delivering

membership updates efficiently in the presence of failures.

Vis-à-Vis also uses leases and multicast to maintain consistent

views of the membership among participating VISs, but does

not require the entire tree to be replicated at each node because

users are likely to be involved with many groups.

VII. CONCLUSION

We have presented the design, implementation, and evalua-

tion of Vis-à-Vis, a decentralized framework for online social

networks. Vis-à-Vis is based on a federation of independent

Virtual Individual Servers, machines owned by individuals

and preferably running in a paid, virtualized cloud-computing

infrastructure. Vis-à-Vis preserves privacy by avoiding the

pitfalls of the prevailing OSN model based on centralized

free services. We focused on Vis-à-Vis’s use of distributed

hierarchies to provide efficient and scalable location-based

operations on social groups. We deployed a Vis-à-Vis proto-

type in Amazon EC2 and measured its performance against a

centralized implementation of the same OSN operations. Our

results show that the latency of our decentralized system is

competitive with that of its centralized counterpart.

ACKNOWLEDGEMENTS

The work by the co-authors from Duke University was

supported by the National Science Foundation under award

CNS-0916649, as well as by AT&T Labs and Amazon.

REFERENCES

[1] “Facebook statistics,” http://www.facebook.com/press/.

[2] Business Insider, “Twitter finally reveals all its secret stats,” April 2010.
[3] Mashable, “Foursquare exceeds 40 million checkins,” May 2010.
[4] ArsTechnica, “EPIC fail: Google faces FTC complaint over Buzz

privacy,” February 2010.
[5] ArsTechnica, “Twitter gets government warning over 2009 security

breaches,” June 2010.
[6] Associated Press / MSNBC, “Facebook shuts down beacon marketing

tool,” September 2009.

[7] ArsTechnica, “Are ”deleted” photos really gone from Facebook? Not
always,” July 2009.

[8] ArsTechnica, “Creepy insurance company pulls coverage due to Face-
book pics,” November 2009.

[9] Facebook, “Statement of rights and responsibilities,”
http://www.facebook.com/terms.php.

[10] TechCrunch, “Senators Call Out Facebook On Instant Personalization,
Other Privacy Issues,” April 2010.

[11] M. Madden and A. Smith, “Reputation management and social media,”
May 2010, http://www.pewinternet.org/Reports/2010/.

[12] C. Hoofnagle, J. King, S. Li, and J. Turow, “How different are young
adults from older adults when it comes to information privacy attitudes &
policies,” April 2010, http://ssrn.com/abstract=1589864.

[13] “Amazon Elastic Compute Cloud (EC2),”
http://aws.amazon.com/ec2/.

[14] “Loopt,” http://www.loopt.com.
[15] “Google latitude,” http://www.google.com/latitude.
[16] “Gowalla,” http://www.gowalla.com.
[17] TechCrunch, “Twitter Turns On Location. Not For Twitter.com Just Yet.”

November 2009.
[18] TechCrunch, “Foursquare now adding nearly 100,000 users a week,”

June 2010.
[19] S. Consolvo and et al, “Location disclosure to social relations: why,

when, & what people want to share,” in CHI ’05, 2005.
[20] S. Ahern and et al, “Over-exposed?: privacy patterns and considerations

in online and mobile photo sharing,” in CHI ’07, 2007.
[21] TechCrunch, “It’s Not Easy Being Popular. 77 Percent Of Facebook Fan

Pages Have Under 1,000 Fans,” November 2009.
[22] R. Cáceres and et al, “Virtual individual servers as privacy-preserving

proxies for mobile devices,” in MobiHeld ’09, 2009.
[23] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better

privacy for social networks,” in CoNEXT ’09, 2009.
[24] J. Cowling, D. R. K. Ports, B. Liskov, R. A. Popa, and A. Gaikwad,

“Census: Location-aware membership management for large-scale dis-
tributed systems,” in USENIX ’09, 2009.

[25] A. Mondal, Y. Lifu, and M. Kitsuregawa, “P2PR-Tree: An R-Tree-Based
Spatial Index for Peer-to-Peer Environments,” in EDBT Workshop on

P2P and Databases, 2004.
[26] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,

“Skipnet: A scalable overlay network with practical locality properties,”
in USITS ’03, 2003.

[27] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Per-
sona: an online social network with user-defined privacy,” in SIGCOMM

’09, 2009.
[28] S. Guha, K. Tang, and P. Francis, “NOYB: Privacy in online social

networks,” in WOSN ’08, 2008.
[29] D. Liu and et al, “Confidant: Protecting OSN Data without Locking

It Up,” May 2010, Duke University Technical Report TR-2010-04,
submitted for publication.

[30] N. Santos, K. P. Gummadi, and R. Ridrigues, “Towards trusted cloud
computing,” in HotCloud ’09, 2009.

[31] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” in OSDI

’02, 2002.
[32] B. W. Lampson, “How to build a highly available system using consen-

sus,” in WDAG 96, 1996.
[33] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,

vol. 16, no. 2, pp. 133–169, 1998.
[34] “ZooKeeper,” http://hadoop.apache.org/zookeeper.
[35] G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network

Performance of Amazon EC2 Data Center,” in IEEE INFOCOM, 2010.
[36] A. Shakimov and et al, “Privacy, cost, and availability tradeoffs in

decentralized OSNs,” in WOSN ’09, 2009.
[37] M. Lucas and N. Borisov, “flybynight: mitigating the privacy risks of

social networking,” in SOUPS ’09, 2009.
[38] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “PeerSon: P2P

social networking - early experiences and insights,” in SocialNets ’09,
2009.

[39] J. Anderson, C. Diaz, J. Bonneau, and F. Stajano, “Privacy Preserving
Social Networking Over Untrusted Networks,” in WOSN’09, 2009.

[40] K. P. N. Puttaswamy and B. Y. Zhao, “Preserving privacy in location-
based mobile social applications,” in Hotmobile’10, 2010.

[41] L. A. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social
networking through decentralization,” in WONS ’09, 2009.

